The Variational Gaussian Process

نویسندگان

  • Dustin Tran
  • Rajesh Ranganath
  • David M. Blei
چکیده

Variational inference is a powerful tool for approximate inference, and it has been recently applied for representation learning with deep generative models. We develop the variational Gaussian process (VGP), a Bayesian nonparametric variational family, which adapts its shape to match complex posterior distributions. The VGP generates approximate posterior samples by generating latent inputs and warping them through random non-linear mappings; the distribution over random mappings is learned during inference, enabling the transformed outputs to adapt to varying complexity. We prove a universal approximation theorem for the VGP, demonstrating its representative power for learning any model. For inference we present a variational objective inspired by auto-encoders and perform black box inference over a wide class of models. The VGP achieves new state-of-the-art results for unsupervised learning, inferring models such as the deep latent Gaussian model and the recently proposed DRAW.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RBF-Chebychev direct method for solving variational problems

This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...

متن کامل

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Gaussian process latent variable models (GPLVMs) are a probabilistic approach to modelling data that employs Gaussian process mapping from latent variables to observations. This paper revisits a recently proposed variational inference technique for GPLVMs and methodologically analyses the optimality and different parameterisations of the variational approximation. We investigate a structured va...

متن کامل

Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression

We introduce a novel variational method that allows to approximately integrate out kernel hyperparameters, such as length-scales, in Gaussian process regression. This approach consists of a novel variant of the variational framework that has been recently developed for the Gaussian process latent variable model which additionally makes use of a standardised representation of the Gaussian proces...

متن کامل

Variational Inference for Gaussian Process Models with Linear Complexity

Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...

متن کامل

Variational Model Selection for Sparse Gaussian Process Regression

Sparse Gaussian process methods that use inducing variables require the selection of the inducing inputs and the kernel hyperparameters. We introduce a variational formulation for sparse approximations that jointly infers the inducing inputs and the kernel hyperparameters by maximizing a lower bound of the true log marginal likelihood. The key property of this formulation is that the inducing i...

متن کامل

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling

Time series data of high dimensions are frequently encountered in fields like robotics, computer vision, economics and motion capture. In this survey paper we look first at Gaussian Process Latent Variable Model (GPLVM) which is a probabilistic nonlinear dimensionality reduction method. Further we discuss Gaussian Process Dynamical Model (GPDMs) which are based GPLVM. GPDM is a probabilistic ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016